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List of Symbols

_B(x,y,z) mean velocity

6_'exp[i{ax + By - at}]

B

k

T

TS

M o

perturbation velocity

complex streamwise wavenumber

spanwise wavenumber of G_rtler perturbation

spanwise wavenumber of TS wave

temporal frequency

Taylor number

Tollmien-Schlichting

angle between TS wave propagation and the mean flow direction
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There are many fluid flows of practical interest where transition can be
caused by competinE hydrodynamic instabilities. Thus in three-dlmensional
boundary-layer flows over curved walls, instability might be caused by
Tollmlen-Schlichting waves, G_rtler vortices or crossflow vortices. If a
particular type of instability is suppressed by some means, there is the
possibility that another one might be stimulated. Hence it is important to
understand the mechanisms by which these different instabil_t_es lnteract.
Here we shall discuss someproperties of the interaction which can take place
between C_rtler vortices and Tollmlen-Schl_cbti_g waves.

INTERACTION OF TOLLMIEN-SCHLICHTING

WAVES AND GORTLER VORTICES

| Large amplitude Gb°rtler vortices, small linear

Tollmien-Schlichting (TS) waves

2. Weakly nonlinear interaction of small amplitude

Gb°rtler vortices and small amplitude Tollmien-

Schlichting waves

3. Large amplitude TS waves, 3-D breakdown

induced by unsteady G_rtler instability
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We discuss the linear stability of large amplitude G@rtler vortices to

Tollmien-Schlichting waves. In order to avoid technical difficulties

associated with boundary-layer growth, we shall concentrate on fully developed

flows in curved channels. However, the corresponding external flow problem

can be treated in essentially the same way and gives similar results. Some

discussion will also be given about the secondary instability of large

amplitude Tollmlen-Schllchting waves to Gortler vortices. In this case,

instability occurs in the presence of convex or concave curvature.

Secondary instabilities of large G_rtler vortices

• Basic state is now a spatially periodic flow in z direction. We calculate
this flow by integrating the Navier-Stokes equations numerically

• In external flows basic state is a function of x, y, z

• Now perturb the basic state by writing

A= _ (x, y, z) + 6_exp [i {o_x+ J3y-_t}

• Solve the linearized equations at high Reynolds numbers using
Triple Deck Theory

• For spatially varying flows write

X

o_x=./" o_(x')dx'

and calculate o_as the disturbance moves downstream
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Here we show the dependenceof the wave number of neutral TS waves on
frequency at different values of the Taylor number T. The results for T = 0
correspond to zero curvature. The wave number at a given frequency increases
monotonically with the curvature.
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This figure shows the growth rate of unstable TS waves as a function of

frequency at different Taylor numbers. Note the significant destabilization

effect of the vortices on the growth race. At the larger values of T _he

area under the unstable part of the curve is typically increased by 40-50%.
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The wave numbers for a 3-D TS wave at T = 0 and T = if000 are shown
below. Note the _ncrease _n the wave number produced by the curvature.
Calculatlons at d_fferent values of T produce similar results.
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This figure shows the growth rate of a 3-D TS wave at T = II000 at

different values of the frequency. The vortex flow again destabilizes the TS

wave and the unstable area under the curve is again increased by 40-50%. This

result is typical of the effect of vortices on 3-D TS waves.
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The interaction of a Gortler vortex of spanwise wave number B with a

pair of skewed Tollmien-Schlichting waves with wave numbers _ and ±k in

the x and z directions was considered. A particularly strong interaction

was found to occur when B = k/2. In fact there is a "resonant triad"

interaction between the different modes in this case. The amplitudes a, b,

and c of the Tollmien-Schllchtlng waves over the GSrtler vortex were found

to satisfy the equations

da

dt e a + f0bc ,

d b = gob + h0a_ 'dt

dc la_,d--_ = gl c + h

where e, f' go, ho, gl' hl are constants. These constants were calculated

numerically and determine the nature of the solutions to these equations. For

the values of these constants appropriate to channel flows, we find that any

solution of these equations terminates in a singularity at a finite time.

Physically this means that the disturbance amplitude becomes unbounded at that

time.

Weakly nonlinear interaction of TS and G6rtler

TS waves ~ el{ °_x +-kz- _lt}

G6rtler vortices ~ eil_ z

Triad interactions involving 2 TS waves and a G6rtler
vortex dominate nonlinear growth. TS waves are
inclined at an angle M°to flow direction, Interaction
governed by triple deck theory
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In fact, at this stage a much stronger interaction takes place. The

interaction is governed by a coupled partial differential system and an

ordinary integro-dlfferential equation. The nature of the solutions to this

system again depends on numerical values of the constants appearing in this

equation. The resultin_ behavior is characterized in terms of M, the angle

between the direction of propagation of the waves and the flow direction.

If M is less than 41.6 ° , a much weaker blow-up occurs in an infinite time.

Thus, the system stays in the smaller amplitude state for a much longer time

if M < 41.6. Indeed the strong interaction for M > 41.6 ° can take place in

the absence of curvature. We conclude that in shear flows this is a nonlinear

interaction mechanism involving two skewed Tollmlen-Schlichting waves and a

longitudinal vortex which produces unbounded growth of the disturbance after a

finite time in a channel flow or after a finite distance in an external flow.

Stage 1

• Small amplitude TS and Gb°rtler interact and develop

a finite time singularity

Stage 2

• Large amplitude disturbances, blow up if M>41.6

• Curvature not needed, mechanism occurs in

straight channels & flat plate boundary layers
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Now let us consider the instability of large amplitude Tollmien-
Schllchtlng waves to G_rtler vortices. The llnearlzed form of the G_rtler
equations applies to interacting boundary layers or Triple-Deck flows. Thus
since it has been shown that large amplitude two and three-dlmenslonal
Tollmlen-Schllchtlng waves are governed by Triple Deck theory, we can use
these equations to investigate the instability of these flows.

The surprising feature of the large amplitude structure of Tollmien-
Schllchting waves is that they have a wall layer essentially identical to a
Stokes layer induced by oscillating a flat plate fn a viscous fluid. However,

it was shown that in the presence of curvature, Stokes layers are unstable to

G_rtler vortices. The vortices are confined to the Stokes layer and have axes

aligned with the flow direction. Thus this instability mechanism occurs for

large amplitude Tollmlen-Schllchtlng waves. The instability can occur for

either convex or concave curvature since for tlme-periodlc flows there is no

analogue of Rayleigh's criterion for the centrifugal instability of curved

flows. It suffices to say that at moderate value of the curvature even

relatively small amplitude Tollmlen-Schllchtlng waves break up in this way.

Sublayer instabilities of large amplitude TS

waves interacting with surface curvature.

Convex or concave curvature causes breakdown.

3-D breakdown

Use Smith-Burggraf theory to calculate large

amplitude 2- or 3-D TS waves. The Stokes

sublayer of these waves is unstable in presence

of convex or concave curvature.
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